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Abstract.
The regenerative method for estimating steady-state parameters is one of the

basic methods in the simulation literature. This method depends on central limit

theorems for regenerative processes and weakly consistent estimates for the variance

constants arising in the central limit theorem. A weak sufficient (and probably

necessary) condition for both the central limit theorems and consistent estimates is

given. Several references have claimed (without proof) strong consistency of the

variance estimates under our condition. This claim seems to us unjustified and we hope

this note helps clarify the situation. Also discussed is the relationship between

conditions for the validity of the regenerative method and those for the validity of the

standardized time series methods.
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1. Introduction.

The regenerative method (RM) for estimating steady-state parameters via
simulation has been widely studied; cf. Bratley, Fox, and Schrage (1987), p. 95, Crane
and Lemoine (1977), and Law and Kelton (1991), p. 557. Our goal in this paper is to

develop the weakest known condition under which the RM is valid. [This condition is

probably necessary, as well as sufficient.I This condition is of interest since a number of
errors on this subject have appeared in the literature. Furthermore, since the RM is

perhaps the cleanest setting for simulation output analysis, it is important to have a

good understanding of the required condition. This paper also discusses the relationship
between conditions for the validity of the regenerative methods and those for the
validity of the standardized times series methods (STSM).

Let X = (X(t): t > 0) be a (possibly delayed) regenerative process on state space
S with regeneration times T(-1) = 0 < T(0) < T(1) <-... Denote the regenerative cycle
lengths by r, = T(n) - T(n - 1), n > 0. Let f:S --+ R be a given measurable function

and define the sequence of random variables
,T(n)

Y,(f) f fT(_)f[X(s)]ds, n > 0.
JT(n-1)

Often we abbreviate Y,(f) as Y,, when no ambiguity arises. Throughout this paper we
assume that the regenerative process X is positive recurrent, so that ET"1 < co. The
condition that follows is the one we use to guarantee the validity of the RM.

Condition A.
There ezists a finite constant a such that E[Y1 - arl] = 0 and

0 < E[(Y 1 - ar 1 )2] < cc.
Let Z_ = Yn - aT,, n > 1. The regenerative property of X implies that the

sequence (Z,,: n > 1) is independent and identically distributed (i.i.d.). Condition A

implies that EIZ11 < co, EY 1I < oo, and a = EY1/Erl.
Two point estimators for a arise in the RM. The first, a(t), is based on a

simulation from time 0 to t. The second, a,, is based on a simulation of n regenerative

cycles. These estimators are defined as

a(t) = tf[X(s)ds, t > 0,
and 0

where ?,, = n- E Y1, and f'n = n- 1 E rk. The fact that a(t) is strongly consistent for a
k=1l k=1when EY 1 J <co and ET1 <cc (converges to a a.s. as t --+ oo) is well known in the

regenerative process literature; cf. Chung (1960), p. 87, for a proof in the Markov chain
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case. Under the same condition an is strongly consistent for a by the strong law of large

numbers for i.i.d. random variables (r.v.).

The goal of the RM is to produce asymptotically valid confidence intervals for a

as the length of the simulation becomes large (t -+ o or n --- oo). This requires the

following central limit theorems (c.l.t.) for both a(t) and an:

(1.1) Theorem. If condition A holds, then

(1.2) t" 2[a(t) - a] a oN(O, 1) as t -- 00,

(1.3) ni/2 [an - a] = o2N(0, 1) as n -- 0o,

where = denotes weak convergence, N(0, 1) is a normal r.v. mean 0 variance 1,
2= EZ2/Erl, and o. = EZ2/(E 1 )2 .

Again, this theorem is well established; cf. Chung (1960), p. 94. To complete the

establishment of asymptotic confidence intervals for a we need weakly consistent

estimators v(t) and v, for al and oj respectively. Given such estimators, it follows from

Theorem 1.1 and the continuous mapping theorem (Billingsley (1968), p. 30) that the

intervals

(1.4) [a(t) - z(a)(t) 1 +2 Z(b)v(t) 1 / 2],i/ () 2

(1.5) ~I

are asymptotic 100(1-6)% confidence intervals for a, where z(6) is chosen so that

P[N(0, 1) _< z(6)]= 1 - 6/2. In Section 2 we show that condition A is sufficient to

guarantee the existence of weakly consistent estimators for a, and a2. We note that

Condition A does not imply that EY?(f)<oo and ET? <10, so that standard

arguments based on the law of large numbers do not apply.
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2. Consistency of Regenerative Variance Estimators

The two variance estimators we consider for al and a2 respectively are

N (t)
v(t) = t- [Y, - cr(t)T', t > 0

i=1

and

nn
n -  [Y,-a,,r]2

V n = . I:( .) n > 1

where N(t) = sup{n > -1:T(n) < t}, the number of completed regenerative cycles in the

interval [0, t]. Our main result, contained in the next theorem, is to show weak

consistency of v(t) and v, under the same condition as that required for the ,.i.,.'s (see

Theorem 1.1).

(2.1) Theorem. If condition A holds, then

(2.2) V(t) => a as t -- oo

and

(2.3) Vn => o as n- oo.

Proof. We shall only prove (2.2) here, as the proof for (2.3) is similar. First we rewrite

v(t) as

N(t)
(2.4) v(t) - t -  [Y, - ar, - (a(t) - a)r,]2

i=1

N(t) N(9)
= V - 2t- 1  Z Zr,(a(t) - a)

3=1 3=1

+ t-(a(t) 0- )2 N(9)r.

The first term on the right-hand side (r.h.s.) of (2.4) converges to oj a.s. by the strong

laws for i.i.d. partial sums and for renewal processes. Hence we need to show that terms

two and three on the r.h.s. of (2.4) converge weakly to zero, and then apply the

"Converging Together" theorem; cf. Billingsley (1968), p. 25. For term two we know

that tl/ 2(a(t) - a) => aIN(O, 1). So it suffices to show that

3N(t)
(2.5) C32 ZrT --+ 0 a.s. as t - oo

in order to conclude that the second term converges weakly to 0. Since EZ' < 00 by

assumption, Z2./n --+ 0 a.s. by the Borel-Cantelli lemma; cf., Chung (1968) and apply

Theorem 3.2.1, 4.2.1, and 4.2.2. This in turn implies that Zg/n 1 / 2 -+ 0 a.s.,

max IZkI/n'1 2 --+ 0 a.s., and max IkI/t 1 2 -- 0 a.s.
1<k<n 'kN(t)
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Now observe that

3N(t) 3N(t)

2 ZT,! < E IZTI
N(t)

< (t max IZkI) -(t- ' E r,).
-<k<N(t) m=

As shown above the first term on the r.h.s. above converges to 0 a.s., while the second

term converges a.s. to 1 by the strong laws used above. For the third term on the r.h.s.

of (2.4), we note that t112(a(t) -a) 2 => a2N(0, 1)2 from (1.2). Thus it suffices to show

that

N(t)(2.6) t- " - ~. as t - oo.
i=1

Since Er1 < 00 by assumption, the same Borel-Cantelli argument used above

shows that max r,/t --- 0 a.s.
I <k<N(t)

Thus

N(t) 2 N(t)

t-2 E 71 (r- max Tk). (t-'E rk) -. 0 a.s.i=1 -- <k<N(t) " k=1

establishing (2.6). Using these results in conjunction with (2.4) shows that v(t) => a'. I

There has been the claim in the simulation literature that Condition A implies

strong consistency of v(t) and v.; cf. Bratley, Fox, and Schrage (1987), p. 118-119;

Crane and Lemoine (1977), p. 42; Law and Kelton (1991), p. 559; and Shedler (1987),

p. 29. No proof of this claim has been given, and we suspect that it is not true based on

the argument required to prove Theorem 2.1. Certainly the claim is true under the

added condition ET, < oo, which may be what was intended in the references above.

The argument developed above also establishes the weak consistency of v, for the

general ratio estimation problem of the form a = EYI/Er. Here we assume that the

pairs {(Yi,ri):i > 1) are i.i.d., that E[r 1 I < oo, there exists a finite constant a such that

E[Y 1 - ar] =0, and E[(YI - ar,)2] < 0o. Confidence intervals for a can now be

constructed as was done in the equation (1.5).

3. Conditions for Standardized Time Series Method
There are two principal approaches for estimating a steady-state parameter from

a single simulation run. The RM is an example of the first approach in which weakly

consistent estimation of the variance constant (a' or oj in (1.2) and (1.3)) is required.

Other examples of this approach are the spectral and autoregressive methods. The

second approach, proposed by Schruben (1983), are the standardized time series method

(STSM). In this approach the variance constant is "canceled out" in a manner
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reminiscent of the t-statistic. The popular batch means method is a special case of the

STSM. The starting point for the STSM is the existence of a functional central limit
theorem (f.c.l.t.); see Glynn and Iglehart (1990) for this development.

To discuss the f.c.l.t. we introduce the random functions

x.(t) - n 'f [x(s)Ids
0

for n > 1 and t > 0, where X = (X(t):t > 0) is the regenerative process introduced in
Section 1. Sample functions of X,(. ) lie in the space C[0,oo) of real-valued continuous
functions on [0, oo). Necessary and sufficient conditions for a f.c.l.t. to hold for X" were
recently obtained by Glynn and Whitt (1991). To state this result we define the

sequence of i.i.d. r.v.'s

Wn(f)= sup If[X(TnI + u)dul, n > 1.
O _8<r n 0O

The result of Glynn and Whitt is

(3.1) Theorem. There exist finite-valued deterministic constants a and a such that Yn =0
oB in C [0,oo) if and only if

(3.2) E[(YI(f - a))' ] < oo

and

(3.3) n2P[W(f - a) > n] -+ 0 n -4 oo,

where Yn(t) = nl[Xn(t) - at] and B is standard Brownian motion. In case conditions
(3.2) and (3.3) hold, a = EY1(f)/Er1 and o, = E[(Yl(f -a))']/Erl.

Note that YI(f - a) = ZI. Observe that condition (3.3) is an additional condition
needed for the f.c.l.t. that is not needed for the c.l.t. Here is an example of a
regenerative process that satisfies the c.l.t. but not the f.c.l.t.

Let (Un:n _ 0) and (V.:n > 0) be two sequences of real-valued r.v.'s satisfying

the following conditions:

(3.4) {(Un, V): n > 0) is a sequence of independent pairs,

(3.5) (U,:n >0) is an identically distributed sequence with EUI =0 and

EU2? = a2 < oo; and

(3.6) (V,:n > 0) is an identically distributed sequence with EIVII < o and
EIVI 13/2 = 0.
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Now let T(0) = 0 and T(n) = 2n for n > 1; all regenerative cycles are of length 2. For

n > 0, set X 2. = U + V, X2.+1 = -Vn, and f(z) = x. Finally, set X(t) = X P for

t > 0. Observe that X = (X(t): t > 0) is a regenerative process with a = 0, Yn = U._ 1

Zn = U,- and W, = max{U,_-1 + V,_-11, 1U, 1. + 2Vn-. 1 I}. If we can exhibit U0 and Vo

such that EW 3 1 2 = cc, then " n 1/2p(W 1 > n) = oo and (3.3) will be violated.W2>n=l 01

Note that EW2 EJUo + V 2. Now take U0 and V0 independent with
P{U0 = +1} = P{U0 = = 1 and P{V_ - n1/2 -c/n3/

2 for n = 1,2,... and a positive

constant c. It is easy to check that (3.3) is not valid.
The example above shows that the regenerative c.l.t. can hold without the f.c.l.t.

holding; this result is mentioned in Bratley, Fox, and Schrage (1987), p. 121. Thus the

RM is valid for cases in which the f.l.c.t leading to the STSM is not. In this sense the
RM has a larger domain of applicability than does the STSM.

Of course, it is also the case that the f.c.l.t (and hence the STSM) can hold for a
non-regenerative stochastic process for which the RM is no longer valid. Hence, neither
the class of stochastic processes for which the RM holds nor the class for which the

STSM holds contains the other.
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